The inhibition of embryonic histone deacetylases as the possible mechanism accounting for axial skeletal malformations induced by sodium salicylate.
نویسندگان
چکیده
In spite of the large use of salicylates, introduced into clinical practice more than 100 years ago, their anti-inflammatory and cancer preventive mechanisms are still under study. Teratogenic effects of salicylates have been reported in experimental animals since 1959 but the pathogenic pathways and the mechanisms of action were never described until now. The aim of this work is to verify if the inhibition of embryonic histone deacetylase (HDAC) enzymes and the consequent tissue hyperacetylation could be the mechanism responsible for axial skeletal defects described after the exposure of pregnant rodents to sodium salicylate (SAL). E8 pregnant CD-1 mice were intraperitoneally treated with SAL 0-150-300-450 mg/kg and sacrificed at 1, 3, 5 h after treatment or at term of gestation (E18). E8 embryos were processed for Western blotting and immunostaining analyses, while skeletons of E18 fetuses were double stained for bone and cartilage. A group of control E8 embryos were used to prepare embryonic nuclear extract for the HDAC enzyme assay. A significant SAL dose-related HDAC inhibition activity, compatible with a mixed-type partial inhibition mechanism, was detected. A clear dose-related hyperacetylation of histones was observed in embryos exposed in utero to SAL, with a peak at 3 h after treatment of dams. The most hyperacetylated organs were somites and the heart. Histone hyperacetylation is suggested to be the mechanism accounting for SAL-related axial skeletal and cardiovascular defects and is proposed as the mechanism responsible for other biological effects of salicylates.
منابع مشابه
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملRelationship between embryonic histonic hyperacetylation and axial skeletal defects in mouse exposed to the three HDAC inhibitors apicidin, MS-275, and sodium butyrate.
Some histone deacetylase inhibitors (HDACi) have recently been related to teratogenic effects in rodents. Skeletal defects have been directly associated with embryonic hyperacetylation of somitic nuclei after valproic acid or trichostatin A exposure in vivo. Albeit the antitumoral activity of HDACi has been classically related to chromatin condensation due to histonic lysine hyperacetylation, n...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملEmbryonic expression of cyclooxygenase-2 causes malformations in axial skeleton.
Cyclooxygenases (COXs) have important functions in various physiological and pathological processes. COX-2 expression is highly induced by a variety of stimuli and is observed during certain periods of embryonic development. In this report, the direct effect of COX-2 expression on embryonic development is examined in a novel COX-2 transgenic mouse model that ubiquitously expresses human COX-2 f...
متن کاملValproic Acid-Induced Skeletal Defects and Spina Bifida in Rat Fetuses
Purpose: Among antiepileptic drugs, valproic acid (VA) is a well known teratogenic agent. We previously reported that maternal (VA) administration of VA during critical periods of rat pregnancy can produce very rare CNS defect, syringomyelia. The purpose of the present study was whether VA can affect other organs, based on this finding, we studied the teratogenic effects of it on rat developing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 104 2 شماره
صفحات -
تاریخ انتشار 2008